x^2=143

Simple and best practice solution for x^2=143 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=143 equation:



x^2=143
We move all terms to the left:
x^2-(143)=0
a = 1; b = 0; c = -143;
Δ = b2-4ac
Δ = 02-4·1·(-143)
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{143}}{2*1}=\frac{0-2\sqrt{143}}{2} =-\frac{2\sqrt{143}}{2} =-\sqrt{143} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{143}}{2*1}=\frac{0+2\sqrt{143}}{2} =\frac{2\sqrt{143}}{2} =\sqrt{143} $

See similar equations:

| -3=7+v/2 | | −42=2(4m−1) | | 5(n)=5n-7 | | 4f=8f-8 | | -11+2u=-3u+19 | | 5n^2-12n+1=0 | | 19x=5+18x | | -10-10+p=-5p+10 | | 4g=2g-15+g | | 14x-(6x-8)=56 | | 2x-6=|4x+1| | | 15-2x=3x-2(2x+6) | | -48+10x-14x=36 | | 5(a+4)=4(a-3 | | (5x+1)+86=90 | | 10a+4+8a-2=11a+31 | | -3w^2-10w+1=−4w | | x-6=x−6=5x-25x−2 | | -9b+6=5 | | 7.2(x-1.5)=-144 | | V(3v+2)=0 | | x/2+7=2 | | x2^=108 | | 1=k7− 2 | | (2x+4)+52=90 | | 3x-3=4x-12 | | 5m+8=3(m+7) | | (3x+-4)=(6x+-5) | | 3(w-5)=(-2w-10) | | 5n-(8+4)-6n)2n-7)=114 | | 3(x+3)=4 | | C=39.62+0.50x |

Equations solver categories